853 research outputs found

    Computational modelling of void growth in swelled hydrogels

    Get PDF
    The nature and the large notable distinguishing features of polymeric gels explain their pervasive use as biomaterials in both regenerative medicine and tissue engineering. With regard to their biocompatibility, their ability to withstand large deformation and their significant capacity of solvent absorption, these biomaterials are often selected owing to their versatile mechanical properties and especially the closeness to soft biological tissues, amongst others. A finite-strain theory for the study of the overall behaviour of a porous polymeric gel where microvoids are present is presented. The swollen polymeric gel is modeled as a two-component body composed of two incompressible components, namely, an elastic porous polymer imbibed with a solvant. The chemical equilibrium is assumed to be preponderate at the interface between the porous polymer and the environment where the chemical potential of the solvent is fixed. The initially dry porous polymer undergoes large deformation induced by absorption of a solvent from the environment and mechanical loading. In this paper an attempt is made towards obtaining an estimation of the macroscopic responses of the swollen porous polymer to prescribed proportional loadings. To this end, a two-level representation of the material at hand for which the Representative Volume Element (RVE) imbibed with a solvent is a simple axisymmetric cylinder composed of a homogeneous matrix surrounding a spherical void, is considered. The computational study addresses the situation where the RVE is subjected to prescribed axial and lateral overall stresses under conditions of constant overall stress triaxiality. For fixed values of the Flory-Huggins parameter and the nominal concentration of the solvent, the overall stress-strain behaviour of the RVE model, the influence of the initial porosity, and the prescribed stress triaxiality ratio have been outlined

    The Effectiveness of Auditory Bombardment in the Remediation of Phonological Processes

    Get PDF
    Current research examining the efficacy of different stages of phonological remediation is limited to the use of minimal pairs and the integration of language therapy to assist children with accompanying language deficits. Auditory bombardment, however, although frequently used, has not been researched as to its effectiveness in the remediation of phonological processes. Auditory bombardment is currently being presented through word lists. This researcher suggests that a language-based bombardment, in the form of children’s stories, would aid in the reduction of phonological processes and the acquisition of language skills. Six subjects were included in the research study. The subjects ranged in age from 3-3 to 5-6. Subject selection criteria were as follows: 1) monolingual homes; 2) no history of previous speech and language services; 3) adequate speech mechanisms; 4) normal hearing; 5) moderate to profound phonological delays as determined by the Assessment of Phonological Processes-Revised (APP-R). Pretesting consisted of the APP-R deviancy scores and a 50 utterance language sample analyzed for Developmental Sentence Score (DSS) and Mean Length of Utterance (MLU). These three measures were the dependent variables for the study. The subjects were matched for age and divided into three groups. Group 1 was the control group and received no auditory bombardment. Group 2 was an experimental group and received auditory bombardment in the form of word lists. Group 3 was an experimental group and received auditory bombardment in the form of children’s stories. All three groups received minimal pair therapy. The therapy was administered during twelve 30 minute sessions over six weeks. After treatment the subjects the APP-R was readminstered and a 50 utterance language sample analyzed for DSS and MLU. These measures were analyzed using one way analysis of variances in pre/post comparisons. These comparisons did not yield any statistically significant differences among dependent variables. This indicated that change was not demonstrated as a result of the application of the independent variable. However, reductions in the use phonological processes were noted in all subjects

    Technologies for trapped-ion quantum information systems

    Get PDF
    Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.Comment: 19 pages, 18 figure

    One-dimensional array of ion chains coupled to an optical cavity

    Get PDF
    We present a novel hybrid system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains spaced by 160 ÎŒ\mum along the cavity axis. Each chain can contain up to 20 individually addressable Yb\textsuperscript{+} ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with â‰Č\lesssim10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.Comment: 15 pages, 6 figures, submitted to New Journal of Physic

    Planetary Science Virtual Observatory architecture

    Full text link
    In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to provide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators

    From performance curves to performance surfaces: Interactive effects of temperature and oxygen availability on aerobic and anaerobic performance in the common wall lizard

    Get PDF
    Accurately predicting the responses of organisms to novel or changing environments requires the development of ecologically-appropriate experimental methodology and process-based models. For ectotherms, thermal performance curves (TPCs) have provided a useful framework to describe how organismal performance is dependent on temperature. However, this approach often lacks a mechanistic underpinning, which limits our ability to use TPCs predictively. Furthermore, thermal dependence varies across traits, and performance is also limited by additional abiotic factors, such as oxygen availability. We test a central prediction of our recent Hierarchical Mechanisms of Thermal Limitation (HMTL) Hypothesis which proposes that natural hypoxia exposure will reduce maximal performance and cause the TPC for whole-organism performance to become more symmetrical. We quantified TPCs for two traits often used as fitness proxies, sprint speed and aerobic scope, in lizards under conditions of normoxia and high-elevation hypoxia. In line with the predictions of HMTL, anaerobically fuelled sprint speed was unaffected by acute hypoxia while the TPC for aerobic scope became shorter and more symmetrical. This change in TPC shape resulted from both the maximum aerobic scope and the optimal temperature for aerobic scope being reduced in hypoxia as predicted. Following these results, we present a mathematical framework, which we call Temperature–Oxygen Performance Surfaces, to quantify the interactive effects of temperature and oxygen on whole-organism performance in line with the HMTL hypothesis. This framework is transferrable across traits and levels of organization to allow predictions for how ectotherms will respond to novel combinations of temperature and other abiotic factors, providing a useful tool in a time of rapidly changing environmental conditions.info:eu-repo/semantics/publishedVersio

    Merging the “Morphology–Performance–Fitness” Paradigm and Life-History Theory in the Eagle Lake Garter Snake Research Project

    Get PDF
    The morphology-performance-fitness paradigm for testing selection on morphological traits has seen decades of successful application. At the same time, life-history approaches using matrix methods and perturbation studies have also allowed the direct estimate of selection acting on vital rates and the traits that comprise them. Both methodologies have been successfully applied to the garter snakes of the long-term Eagle Lake research project to reveal selection on morphology, such as color pattern, number of vertebrae, and gape size; and life-history traits such as birth size, growth rates, and juvenile survival. Here we conduct a reciprocal transplant study in a common laboratory environment to study selection on morphology and life-history. To place our results in the ecomorphology paradigm, we measure performance outcomes (feeding rates, growth, insulin-like growth factor 1 titers) of morphological variation (body size, condition) and their fitness consequences for juvenile survival?a trait that has large fitness sensitivities in these garter snake populations, and therefore is thought to be subject to strong selection. To better merge these two complementary theories, we end by discussing our findings in a nexus of morphology-performance-fitness-life history to highlight what these approaches, when combined, can reveal about selection in the wild.Fil: Addis, Elizabeth A.. University of Iowa; Estados UnidosFil: Gangloff, Eric J.. University of Iowa; Estados UnidosFil: Palacios, MarĂ­a Gabriela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico; Argentina. University of Iowa; Estados UnidosFil: Carr, Katherine E.. Gonzaga University; Estados UnidosFil: Bronikowski, Anne M.. University of Iowa; Estados Unido

    Computer modeling the fatigue crack growth rate behavior of metals in corrosive environments

    Get PDF
    The objective of this task was to develop a method to digitize FCP (fatigue crack propagation) kinetics data, generally presented in terms of extensive da/dN-Delta K pairs, to produce a file for subsequent linear superposition or curve-fitting analysis. The method that was developed is specific to the Numonics 2400 Digitablet and is comparable to commercially available software products as Digimatic(sup TM 4). Experiments demonstrated that the errors introduced by the photocopying of literature data, and digitization, are small compared to those inherent in laboratory methods to characterize FCP in benign and aggressive environments. The digitizing procedure was employed to obtain fifteen crack growth rate data sets for several aerospace alloys in aggressive environments

    Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2.

    Get PDF
    The molecular determinants underpinning how hexaacylated lipid A and tetraacylated precursor lipid IVa activate Toll-like receptor 4 (TLR4) are well understood, but how activation is induced by other lipid A species is less clear. Species specificity studies have clarified how TLR4/MD-2 recognises different lipid A structures, for example tetraacylated lipid IVa requires direct electrostatic interactions for agonism. In this study, we examine how pentaacylated lipopolysaccharide from Rhodobacter sphaeroides (RSLPS) antagonises human TLR4/MD-2 and activates the horse receptor complex using a computational approach and cross-species mutagenesis. At a functional level, we show that RSLPS is a partial agonist at horse TLR4/MD-2 with greater efficacy than lipid IVa. These data suggest the importance of the additional acyl chain in RSLPS signalling. Based on docking analysis, we propose a model for positioning of the RSLPS lipid A moiety (RSLA) within the MD-2 cavity at the TLR4 dimer interface, which allows activity at the horse receptor complex. As for lipid IVa, RSLPS agonism requires species-specific contacts with MD-2 and TLR4, but the R2 chain of RSLA protrudes from the MD-2 pocket to contact the TLR4 dimer in the vicinity of proline 442. Our model explains why RSLPS is only partially dependent on horse TLR4 residue R385, unlike lipid IVa. Mutagenesis of proline 442 into a serine residue, as found in human TLR4, uncovers the importance of this site in RSLPS signalling; horse TLR4 R385G/P442S double mutation completely abolishes RSLPS activity without its counterpart, human TLR4 G384R/S441P, being able to restore it. Our data highlight the importance of subtle changes in ligand positioning, and suggest that TLR4 and MD-2 residues that may not participate directly in ligand binding can determine the signalling outcome of a given ligand. This indicates a cooperative binding mechanism within the receptor complex, which is becoming increasingly important in TLR signalling.This work was supported by a project grant from the Horserace Betting Levy Board to CEB and a Horserace Betting Levy Board Veterinary Research Training Scholarship to KLI. This work was also supported by a Wellcome Trust program grant to NJG and CEB. CEB is a BBSRC Research Development Fellow.This is the final version of the article. It first appeared from PLOS at http://dx.doi.org/10.1371/journal.pone.0098776
    • 

    corecore